Clustering and visualization of a high-dimensional diabetes dataset
نویسندگان
چکیده
منابع مشابه
Reduct and Variance Based Clustering of High Dimensional Dataset
In high dimensional data, general performance of the traditional clustering algorithms decreases. As some dimensions are likely to be irrelevant or contain noisy data and randomly selected initial centre of the clusters converge the clustering to local minima. In this paper, we propose a framework for clustering high dimensional data with attribute subset selection and efficient cluster centre ...
متن کاملA hybridized K-means clustering approach for high dimensional dataset
Due to incredible growth of high dimensional dataset, conventional data base querying methods are inadequate to extract useful information, so researchers nowadays is forced to develop new techniques to meet the raised requirements. Such large expression data gives rise to a number of new computational challenges not only due to the increase in number of data objects but also due to the increas...
متن کاملRelationship-Based Clustering and Visualization for High-Dimensional Data Mining
In several real-life data-mining applications, data reside in very high (1000 or more) dimensional space, where both clustering techniques developed for low-dimensional spaces (k-means, BIRCH, CLARANS, CURE, DBScan, etc.) as well as visualization methods such as parallel coordinates or projective visualizations, are rendered ineffective. This paper proposes a relationship-based approach that al...
متن کاملISC–Intelligent Subspace Clustering, A Density Based Clustering Approach for High Dimensional Dataset
Many real-world data sets consist of a very high dimensional feature space. Most clustering techniques use the distance or similarity between objects as a measure to build clusters. But in high dimensional spaces, distances between points become relatively uniform. In such cases, density based approaches may give better results. Subspace Clustering algorithms automatically identify lower dimens...
متن کاملClassification of Chronic Kidney Disease Patients via k-important Neighbors in High Dimensional Metabolomics Dataset
Background: Chronic kidney disease (CKD), characterized by progressive loss of renal function, is becoming a growing problem in the general population. New analytical technologies such as “omics”-based approaches, including metabolomics, provide a useful platform for biomarker discovery and improvement of CKD management. In metabolomics studies, not only prediction accuracy is ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Computer Science
سال: 2019
ISSN: 1877-0509
DOI: 10.1016/j.procs.2019.09.392